MIEP
  • Menu
  • Go
  • About
  • Team
  • Immunology
  • Models
  • Tools
  • Projects
  • Data
  • Education
  • Home Animal Models

Animal Models


  • Helicobacter pylori infection

    At NIMML we investigate the role of gastric macrophages in the outcome of infection and the role of NLRX1 in sensing and orchestrating the mucosal immune response


  • Inflammatory Bowel Disease

    We are interested in genes with immunoregulatory functions that can be used for developing new therapeutics


  • Pig models

    NIMML has more than 20 years of experience in developing pig models of infectious and immune-mediated disease like colitis, influenza or Helicobacter pylori infection.


  • Clostridium difficile infection

    With our mouse model of CDAD we are studying the interplay between the normal colon microbiome, C. difficile and the balance between effector and regulatorymucosal responses.


  • Type 2 Diabetes

    NIMML employs mouse models of obesity, hyperglycemia and insulin resistance to investigate promising therapeutic targets and compounds for diabetes mellitus.


  • Influenza

    We are working in developing host-based therapeutic approaches that alone or in combination with antivirals can be used to decrease morbidity and mortality during episodes of seasonal or pandemic flu

  • Contact
  • Education
  • News & Events
  • Publications

© 2000 - 2025 NIMML Institute


  • Clinical
    • Clinical Development (Phase I-IV)
  • Pig Models
    • Neonatal pig model
    • Inflammatory bowel disease
    • Novel Pig Model of H. pylori
  • Media & Press Kit
    • Mission, Vision, Values
    • History
    • Quick Facts
    • Strategic Initiatives
  • ENISI Helicobacter Pylori Model
    • Sensitivity Analysis
    • Cell Movement Modeling
  • CDiff Computational Model Archive
    • Mucosal Immune Responses
    • PPAR γ and miRNA
  • EAEC Computational Model
    • Mucosal Immune Responses
    • T Cell Response
    • Epithelial Cell Responses
  • Macrophage Computational Model Archive
    • April 2012
    • Jan 2012
    • Oct 2011
  • COPASI Helicobacter Pylori Computational Model Archive
    • May 2012
    • April 2012
    • Jan 2012
    • Sep 2011
  • CD4+ T Cell Model Archive
    • Feb 2014
    • October 2012
    • August 2012
    • April 2012
    • Jan 2012
    • Sep 2011
    • June 2011
    • March 2011
  • Immunology
    • Helicobacter pylori
    • CD4+ T cell differentiation
    • Human Studies
    • Enteroaggregative E. coli
  • Animal Models
    • Type 2 Diabetes
    • Clostridium dificile infection
    • Influenza
    • Inflammatory bowel disease
    • Helicobacter pylori
    • Pig Models
    • Murine Models
  • Infectious Diseases
    • Helicobacter pylori
    • Clostridium difficile
    • Enteroaggregative E. coli
  • Immune Mediated Diseases
    • Novel IBD Interventions
  • Nutritional Immunology
    • Novel IBD Interventions
    • Phytochemicals
    • Dietary Lipids
    • Prebiotics and Probiotics
  • Drug Development
    • Host-targeted Therapeutics
    • Translational Medicine
  • Data
    • Modeling NLRX1 response to H.pylori
    • Modeling Clostridium difficile Immune Response
    • EAEC Zinc Deficiency
    • IL-21 in the Gastric Mucosa
    • Novel Pig Model
    • CD4+ T Cells
    • Modeling H. pylori Immune Response
    • Clostridium difficile
    • Enteroaggregative Escherichia coli
    • ENISI V0.9 in silico experiments
  • Computational Models
    • Inflammatory bowel disease
    • CD4+ T Cell Model
    • Host Responses to H. pylori
    • Host Responses to EAEC
    • Host Responses to C. difficile
    • Macrophages
  • Tools
    • CMS
    • CellDesigner
    • ENISI Suite
    • COPASI Suite
    • Galaxy
    • LabKey
    • RedCap
    • Intranet
    • CellPublisher
  • Projects
    • Alternate Preclinical Models Of Enteric Infection
    • Modeling Infectious Disease Kinetics (MIDK-cWMD)
  • Immunoinformatics
    • Computational Modeling
    • High Performance Computing
    • Transcriptomics
  • NIMML POLICIES
    • FCOI